通化无线应变传感器厂家

    通化无线应变传感器厂家

  • 24811
  • 产品价格:面议
  • 发货地址:上海闵行浦江 包装说明:不限
  • 产品数量:9999.00 个产品规格:不限
  • 信息编号:151911331公司编号:14595275
  • 李先生 微信 173210513..
  • 进入店铺 在线咨询 QQ咨询 在线询价
    相关产品:


上海豫淞电子科技有限公司

无线传感器网络在禽舍中的应用
我国禽舍设施的现代化程度还不太高,与发达国家相比存在一定的差距。近年米在研究国外禽舍设施技术的基础上,我国的禽舍设施对微型计算机的应用,在总体上正从消化吸收、简单应用阶段,向实用化、综合性应用阶段过渡和发展。现有的禽舍监测系统中数据的采集火多采用传统的有线方式,需要铺设大量的信号传输线,既增加了更新维护的难度,又降低了监测的可靠性和操作的灵活性。随着射频技术的发展,无线技术越米越成熟,使禽舍环境实现无线监测成为可能,目前无线技术在国外的畜禽养殖中已得到应用。 1 禽舍采用无线监测的必要性 我国农业正在从粗放型向集约型转变,实现畜禽养殖的自动化与智能化已成一种趋势,无线传感器网络在禽舍环境监测中的应用顺应了时代的要求。无线传感器网络与传统的禽舍环境监控方式相比有三大优势:一是传感器节点的体积很小且整个网络只需要部署一次,因此减少r人为因素对禽舍环境的影响;二是传感器网络节点数量大,每个节点都可以检测到局部环境的详细信息并汇总到汇聚节点,因此传感器网络具有数据采集量大、精度高的特点;三是无线传感器节点本身具有一定的计算能力和存储能力,可以根据物理环境的变化进行较为复杂的监控,传感器节点还具有无线通信功能,可以在节点间进行协同监控。 节点的计算能力和无线通信功能使得传感器网络能够重新编程和重新部署,对环境的变化、传感器网络自身变化以及网络控制指令做出及时反应,因而传感器网络非常适用于禽舍环境的监测。 2禽舍环境监测应用的传感器网络结构 适用于禽舍环境监测的传感器网络结构见图1。传感器节点被大量部署在禽舍环境的监控区域内,自主形成传感器网络。传感器节点将检测到的数据传送到汇聚节点,汇聚节点负责将传感器节点传来的数据传送给终端。 传感器节点自主形成一个多跳网络,处于网络边缘的节点必须通过其他节点向汇聚节点发送数据。每个传感器节点都能检测禽舍环境的温度、湿度、光照等信息,也可以变换监测目标和监测内容。由于传感器节点具有计算能力和通信能力,可以在传感器网络中对采集的数据进行数据融合处理。这样可以减少数据通信量,节省传感器节点的能量。 2.1节点及节点部署 根据禽舍环境特点的要求,传感器节点需要满足体积小、精度高、生命周期长等的特点。目前使用比较多的是加州伯克利分校研制的Mote节点,即通过扩展板的方式带有一个**的传感器板,板上载有光照传感器、温湿度传感器以及大气压传感器等。 传感器节点在系统中负责完成两方面的工作:一是接收分析用户的监测指令,并根据指令中的参数要求对环境数据进行检测采集;二是通过无线系统将采集的数据发送到汇聚节点。汇聚节点主要负责接收传感节点传来的数据,调度传感节点的运行,实现采集数据的上传和用户指令的下发,汇聚节点是用户和传感节点信息传输的桥梁。汇聚节点除了具备与传感节点同样结构和功能的无线收发模块外,还具有功能强大的处理模块和大容量的存储模块。 如何在禽舍中布置传感节点,直接影响到整个系统的工作效率和投资成本。只有合理的布置节点,才能充分发挥系统高效率和低能耗的优势。关于节点布置的问题在不同的背景下已被研究。确定性布置和自组织布置是节点布置的两种方式。 禽舍中节点的部置还应考虑区域的覆盖和节点问的连接等问题。所谓的覆盖问题,就是我们所监测的目标区域内,都能被传感节点检测到,其实质就是在兼顾节点间通信的基础上,实现监测范围的较大化;每个传感节点都能与汇聚节点通信称为连接,如果系统中存在不连接的节点,某些子区域感测到的信息将成为无效信息。在温室中布置传感节点时,需要考虑有多少个传感节点负责某个参数的测量,决定数量后,要解决怎样准确布置这些节点才能够使得系统效率较高、能耗较低。 2.2节点能量管理 禽舍环境的监测是长时间的连续监测,这对节点能量的供应提出了很高的要求。在传感器网络中,节点对能量的使用是不同的,汇聚节点需要更多的能量接收和发送数据包,网络边缘节点会将能量主要用在数据的搜集上。因此节点在能量的消耗上出现了瓶颈问题。在应用中需要考虑能量消耗较快的节点,并采取一定的节点冗余措施以保证数据传输不会因为个别节点的失效而中断。表1给出了传感器节点操作及消耗电量的关系。 节点节省能量主要采用休眠机制,即当一个传感器节点有任务时,只有与其相邻区域内的传感器节点处于活动状态,其余的处于关闭状态。 2.3 s-MAC协议在禽舍无线传感器网络中的应用 设计无线传感器网络MAC协议时,应当考虑的属性有:节省能量、网络的可扩展性和网络效率。目前,在MAC协议的设计中,往往是通过降低网络的公平性,增加网络的延时、吞吐量,米换取协议的能量有效性。 S-MAC(sensor MAC)协议是在802.11MAC协议基础上,针对传感器网络的节省能量需求而提出的传感器网络MAC协议。S-MAC协议通过周期性休眠获得低占空比运行,通过选择和维护休眠调度表,使相邻节点组成休眠/唤醒自动同步的虚拟组,从而实现信息传输的同步,并减少控制开销。其特点是形成一个使相邻节点都能自由通信的平面拓扑结构,同步节点形成一个无簇内通信的虚拟组,很容易适应拓扑结构的改变。 假设通常情况下传感器网络的数据传输量少,节点协同完成相同的任务,网络内部能够进行数据处理和融合以减小数据通信量,网络能够容忍一定程度的通信延迟,既提供了良好的扩展性,义减少了节点能量的消耗。 无线传感器网络应用到禽舍中,建立禽舍无线监测系统,实现了对禽舍信息的无线采集和畜禽养殖业的自动化与智能化,对于提高畜禽的产量,具有重要的现实意义。同时它的发展和应用对现代科学技术产生了较其重要的影响,在*、医疗、环境监测、家庭自动化和其他领域具有广阔的应用前景。

无线传感器网络的应用范围问题
前些时间在几个地方做了几次关于Sun SPOT的讲座。经常遇到的一个问题就是无线通讯是否可靠的问题,根据我个人的理解,尝试着解答一下吧。


不管是有线通讯还是无线通讯,其基本原理都是一样的。原始信息在发射机端经过调制之后通过某种信号传递介质发送给接收机,接收机端通过解调得到原始信息。无线通讯和有线通讯的根本区别,就在于其信号传递介质。在有线通讯中,这个信号传递介质通常是某种电传导介质(或者是光传导介质),在这种介质上所传递的信号是电信号(或者是光信号)。在无线通讯中,这个信号传递介质通常是大气,在这种介质上所传递的信号是电磁波。从通讯理论上来讲,只要这两种信号传递介质都是导通的,那么其可靠度水平是相当的。说有线通讯比无线通讯更加可靠,其实是觉得看得见摸得着的线缆比看不见摸不着的空气更加实在。再往远处扯一扯,则是“虚”和“实”的本质问题,是可以做一篇哲学论文的。


任何通讯介质,都有其固有的弱点。有线介质不但怕虫吃鼠咬,更怕民工拿锄头乱挖;无线介质虽然怕障碍物阻挡,但是至少不会被虫子咬断。 所以,无线和有线,是各自有其应用环境的。在合适的应用环境里,就能够充分体现出其优点来。在不合适的应用环境里,理论上说得再好也没用。


无线传感器网络之所以会在未来有广阔的前景,在于它很好地解决了最后一公里,最后一百米,最后十米,或者是最后一米的问题。举个例子说,我国较近几年建设的高速公路,基本上都有光缆覆盖,其带宽足以支撑实时的视频监控应用。但是,高速公路沿途的各种摄像头和传感器是不能够直接接入光缆的,因为每在光缆上接入一个设备,就需要接入一对昂贵的光栅机。通常的做法,是将光缆作为骨干网,每隔一定的距离部署一对光栅机作为主节点,主节点附近的各种设备通过其他方式组成局部子网进行通讯,局部子网上的各种设备将主节点作为数据池(Data Sink),数据池上的数据通过主节点并入骨干网,并较终传输到远程数据采集、分析、控制终端。如上所述之最后N 米问题,用有线的解决方案往往是不太方便的,譬如说在已经通车的高速公路周边部署新的传感器,就不能够频繁地考虑将高速公路挖开铺设新的线缆这种可能性。


无线传感器网络的另外一个应用范围,是不便搭设有线通讯设备的环境。譬如说隧道施工现场和地下矿井矿山,施工现场的复杂性,以及传感器的数量级,使得搭设可靠的有线通讯环境非常困难。尽管无线通讯确实会由于施工现场中的种种障碍受到干扰,但是由于我们能够轻易地将无线传感器节点部署到施工现场的各个角落,从而构建起一个全面覆盖的无线通讯网络。在施工现场发生变化的时候,我们还能够轻易地通过调整无线传感器节点的物理位置来适应施工现场所发生的各种变化。这样的灵活性,是有线网络所远远不能够相比拟的。

无线传感器网络技术
无线传感器网络(Wireless Sensor Network, WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络 覆盖区域中被感知对象的信息,并发送给观察者。传感器、感知对象和观察者构成了无线传感器网络的三个要素。


无线传感器网络 (wireless sensor network)简称WSN,是一种由大量小型传感器所组成的网络。这些小型传感器一般称作sensor node(传感器节点)或者mote(灰尘)。此种网络中一般也有一个或几个基站(称作sink)用来集中从小型传感器收集的数据。


传感器节点是一种非常小型的计算机,一般由以下几部分组成:


1.处理器和内存(一般能力都比较有限)。


2.各类传感器(温度、湿度、声音、加速度、**定位等)。


3.通讯设备(一般是无线电收发器或光学通信设备)。


4.电池(一般是干电池,也有使用太阳能电池的)。


5.其他设备,包括各种特定用途的芯片,串行并行接口等(USB,RS232)。


无线传感器网络中的基站的作用是从各个传感器节点收集数据,集中处理然后提交给用户。因此,基站一般有更强的数据处理和通讯能力以及更持久的电力。


DL-WZXT无线传感器网络是新一代的传感器网络。DL-WZXT无线传感网络综合了传感器技术、嵌入式计算技术、现代网络及无...无线传感器网络 的详细介绍 DL-WZXT无线传感器网络 DL-WZXT无线传感器网络是新一代的传感器网络,具有非常广泛的应用。

基于无线传感器网络的CAN总线互联
1 引言


装甲车辆状态信息采集系统的信息采集单元通常采用CAN总线连接,某些情况下,车辆上装和下装之间的旋转连接器由于没有连线空间,需要无线通信模块为上装和下装的CAN总线提供一个透明的无线通道。本文基于无线传感器网络给出一种无线通道的设计,主要包括CAN总线无线接入控制模块电路设计以及无线传感器节点的通信协议设计等内容。


2 电路设计


以无线传感器网络为基础的CAN总线扩展系统总体结构如图1所示,其主要由两块CAN总线无线接入控制模块构成,每个模块的组成及各部分的作用是:无线传感器节点的微控制器及存储器模块,接收对端无线接人控制模块传来的数据并存储,然后将数据交CAN控制器待发,同时接收CAN控制器传来的数据并通过传感器网络将数据发送到对端无线接入控制模块;CAN 控制器采用SJA1000,运行CAN协议,为传感器网络结点提供CAN总线服务;收发器采用TJA1050作为CAN控制器与物理媒体的物理接口,为 CAN控制器提供比特流服务。

3 无线传感器节点


3.1 无线传感器网络节点硬件结构


图 2所示为无线传感器网络节点的硬件,包括传感器模块、微处理器模块和无线通信模块等三个功能部分。GAINTS系列节点使用AT-MEGA128单片机作为控制器和处理核心,无线通信模块核心采用工作在433 MHz的单芯片低电压CC1000收发器,该射频芯片具有工作电压低(2.1~3.6V均可工作)、能耗低、体积小等非常适合于集成的特点。它采用FSK 调制方式,外部采用SPI的接口,可以和微控制器直接相联。CC1000使用频率为14.745 MHz的晶振作为驱动,在该驱动下面CC1000可以提供的较大数据传输率为19.2KB/s,也就是说每ms不到3个字节,这个数据对MAC层的协议是很有用的,在设置ACK等待时间和RTS-CTS等待时间的时候需要考虑这些参数。

3.2 通信协议设计


本文基于TinyOS底层通信接口进行通信协议设计。对TinyOS编程采用的是nesC语言,这是一种类似C的语言,是对C的扩展,也是结构化的语言,是基于组件式的编程,模块化的设计。nesC组件有两种:Module(模块)和Configuration(连接配置文件)。Module在模块中主要实现代码的编制,可以使用和提供接口,在它的实现部分必须对提供接口里的command和使用接口里的event进行实现。


TinyOS是基于一种组件架构方式的开源的嵌入式操作系统,一个应用程序可以通过连接配置文件(a wiring specification)将各种组件连接起来,以完成它所需要的功能。TinyOS的应用程序都是基于事件驱动模式的,采用事件触发去唤醒传感器工作。tasks一般用在对于时间要求不是很高的应用中,且tasks之间是平等的,即在执行时是按先后顺序,一般为了减少tasks的运行时间,要求每一个task都很短小,能够使系统的负担较轻;events一般用在对于时间要求很严格的应用中,而且它可以**于tasks和其他events执行,可以被一个操作完成或是来自外部环境的事件触发,在TinyOS中一般由硬件中断处理来驱动事件。在TinyOS中由于tasks之间不能互相占先执行,所以 TinyOS没有提供任何阻塞操作,为了让一个耗时较长的操作尽快完成,一般都是将对这个操作的需求及其完成分开来实现,以便获得较高的执行效率。由于在 Tiny-OS中没有进程管理的概念,它对任务是按简单的FIFO队列进行处理的,对资源采取预先分配,且这个队列里较多只能有7个未解决的任务。我们设计时,主要处理三类事件,即串口接收数据事件、无线接收数据事件和定时器事件。


①串口接收数据事件。每次节点从串口接收到一个字节的数据将触发该事件。对于信息采集任务来说,其信息是定时采集的。同时,CAN总线的速率远远大于无线传输的速率。因此,在节点开辟了一段较大的缓存区,对CAN 总线传过来的数据进行缓存。该缓存区的大小取决于无线传输的速率以及CAN总线在一个定时采集周期的数据量大小。假设无线传输的速率为V、缓存区大小为 Mem、采集周期为T、每个采集周期的数据量为Data,注意V为传输有效数据的速率,即要去掉协议开销以及管理和控制开销,则至少满足 V×T≥Data,Mem≥Data。为提高无线传输的效率,不是每次从串口接受到一个字节就从无线接口发走,而是每次缓存的字节数达到无线传输一个数据包的大小时,启动任务一UARTRcvdTask。这种采用任务的方式进行实际的无线数据传输可以避免阻塞其他event事件。
-/gjjici/-

欢迎来到上海豫淞电子科技有限公司网站,我公司位于历史文化悠久,近代城市文化底蕴深厚,历史古迹众多,有“东方巴黎”美称的上海市。 具体地址是上海闵行浦江上海闵行浦江新骏环路115号,联系人是李先生。
联系电话是13681652572, 主要经营上海豫淞电子科技有限公司是一家致力于工业物联网系统解决方案的供应商,为客户提供智能传感器、无线风速传感器、无线加速度传感器、无线倾角传感器、无线位移传感器、无线应变传感器、无线振动传感器等产品。欢迎来电咨询!。
单位注册资金单位注册资金人民币 100 万元以下。

  • 供应商更多产品推荐
  • 关于八方 | 招贤纳士八方币招商合作网站地图免费注册商业广告友情链接八方业务联系我们汇款方式投诉举报
    八方资源网联盟网站: 八方资源网国际站 粤ICP备10089450号-8 - 经营许可证编号:粤B2-20130562 软件企业认定:深R-2013-2017 软件产品登记:深DGY-2013-3594 著作权登记:2013SR134025
    互联网药品信息服务资格证书:(粤)--非经营性--2013--0176
    粤公网安备 44030602000281号
    Copyright © 2004 - 2024 b2b168.com All Rights Reserved