现场控制室——操作站计算机PC,主控制器0#SLC(SLC-504)带有标准RS-232C /DH+ /8针圆形接口,共3个网络接口。配置模拟量输入/输出模块,开关量输入/输出模块,共计128点,所有开关量输出均采用继电器隔离。0#SLC控制各设备子站以外的系统测点和阀门。
空压机子站——1#-6#SLC可编程控制器(SLC-504),分别配有包括模拟量输入在内的64点I/O模块;通过DH+接口连接到上层设备网。
干燥器子站——1#-8#M1200微型可编程控制器(Micrologix 1200 自带24点I/O),配接12点模拟量输入I/O模块,通过NET-AIC通信模块接入DH-485下层设备网。PV-500彩色触摸屏也由通信模块的9针插头连接到DH-485网。
2.3.软件组成和工作程序
网络连接软件RSLinx 它在车间级设备与各种应用软件之间提供通讯功能,它可组态网络的通讯协议(即选择PLC控制网络的协议,如DH-485协议,DH+协议),传输波特率,驱动程序等,完成网络的初始化和令牌管理。
编程软件RSLogix 500 可使用户在DH-485网或DH+网上对控制器(SLC 500、Micrologix 1200)进行编程,网络上的任一个工业终端可以用来对网络上的所有控制器编程。用户既可以将程序下载到有关设备中,又可以从设备上载已有的程序,调试程序,监视设备的运行。
工作站组态软件RSView 32 设在现场控制室的操作站用来监视和操作整个生产过程,为控制系统提供通讯、显示及报表管理等功能,各设备控制器自成一子系统,其应用程序功能包括:信息采集,设备控制,故障,联锁保护,以及数据处理和通信传输。
通信传输工作程序如图2所示。在本案例中,从控制中心控制器经现场控制室操作站到7#SLC通信控制器,均采用自上而下的方式读/写目标控制器的数据区数据,由数据传送指令完成数据通信,实现信息集成和远程控制。
3.难点问题和解决方法
整个控制系统随同设备于2003年7月初步完成安装调试工作,进入试生产。2004年2月正式投产,满负荷运行,情况良好,达到设计的预期目标。期间出现过的主要问题为:
1)通信故障引起远程监控失效两次(上层设备网)。分析可能的原因,通信电缆使用了带屏蔽的普通信号电缆而非控制设备规范要求的双绞线屏蔽电缆,易受现场干扰;软件方面对通信异常未设置必要的处理程序。
解决方法——将原来115.2KBps通信传输速率降低到57.6KBps ,以提高数据传输的可靠性;软件方面做了相应的改动,此后未再出现过类似通信故障。
2)通信传输延时,实时控制滞后(下层设备网)。经分析获悉,DH-485令牌总线网络结构的工作模式使得7#SLC通信控制器需要多个循环才能对下层网各设备控制器扫描一遍,加之网络传输速率相对较低,在传输数据量较大时,出现控制延时达7-8秒。
解决方法——由于系统结构已定,硬件无法改变,所以在软件方面加以改进。数据传输速率提高到上限19.2KBps;再修改软件程序,采用控制操作指令**的策略,控制滞后的操作可得到改善。
4.小结
·控制系统网络化可有效实现空压站远程监控,无人值守。本案例的成功实施是一个很好的示例。
·分级控制网络的实施,分散了故障危险,可提高网络运行的有效性和可靠性。
·综合分析生产实际情况,以及全面评价控制设备的各项性能指标,有助于制订经济性的控制方案,从而降低投资成本,提高经济效益。
改进方向:
1)引入故障检测和故障诊断的处理程序,系统的智能化程度可得到提高,有利于进一步改善自控系统的有效性和可靠性。
2)优化调度策略,软件联锁保护等自动控制功能模式的应用,有望将自动化水平提升到更次,并由此获得更大的效益。
西门子变频器6SL3210-1PE21-1UL0是SINAMICS 功率模块 PM240-2 未过滤 带集成式制动斩波器 380-480V+10/-10% 三相交流 47-63Hz 重过载功率:3kW 当 200% 3S,150% 57S, ** 240S;环境温度 -10 至 +50°C;功率 轻过载:4kW 当 150% 3S,110% 57S, ** 240S;环境温度 -10 至 +40°C 291x 100x 165(高x宽x深),FSB 防护等级 IP20 不带控制单元和 操作单元 批准从 CU 固件- 版本 4.6版起已获得许可
要想做好变频器维修,当然了解变频器基础知识是相当重要的 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图1是它的结构图。
变频器基本电路图分析
目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路
如图所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的反向电压一般为1200—1600V,整流电流为变频器额定电流的两倍。
2)滤波电路
逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路
逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器率开关器件的导通与关断,可以得到任意频率的三相交流输出。
通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。
逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护。
1)驱动电路
驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。
对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的**驱动模块。有些品牌、型号的变频器直接采用**驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。
变频器驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。
2)保护电路
当变频器出现异常时,为了使变频器因异常造成的损失减少到小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。
在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。
图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。
3)开关电源电路
开关电源电路向操作面板、主控板、驱动电路及风机等电路提供低压电源。图2.5富士G11型开关电源电路组成的结构图。
直流高压P端加到高频脉冲变压器初级端,开关调整管串接脉冲变压器另一个初级端后,再接到直流高压N端。开关管周期性地导通、截止,使初级直流电压换成矩形波。由脉冲变压器耦合到次级,再经整流滤波后,获得相应的直流输出电压。它又对输出电压取样比较,去控制脉冲调宽电路,以改变脉冲宽度的方式,使输出电压稳定。
4)主控板上通信电路
当变频器由可编程(plc)或上位计算机、人机界面等进行控制时,必须通过通信接口相互传递信号。图2.6是LG变频器的通讯接口电路。
变频器通信时,通常采用两线制的RS485接口。西门子变频器也是一样。两线分别用于传递和接收信号。变频器在接收到信号后传递信号之前,这两种信号都经过缓冲器A1701、75176B等集成电路,以保证良好的通信效果。
所以,变频器主控板上的通信接口电路主要是指这部分电路,还有信号的抗干扰电路。
5)外部控制电路
变频器外部控制电路主要是指频率设定电压输入,频率设定电流输入、正转、反转、点动及停止运行控制,多档转速控制。频率设定电压(电流)输入信号通过变频器内的A/D转换电路进入CPU。其他一些控制通过变频器内输入电路的光耦隔离传递到CPU中。
在下面文章中,上传了有关变频器的维修知识供大家分享! 根据大家对我的提议以及对我的支持,现在将一些变频器基本,基础的知识贡献给大家。变频器开关电源电路、变频器开关电源主要包括输入电网滤波器、输入整流滤波器、变换器、输出整流滤波器、控制电路、保护电路。我们公司产品开关电源电路如下图,是由UC3844组成的开关电路:开关电源主要有以下特点: 1,体积小,重量轻:由于没有工频变频器,所以体积和重量吸有线性电源的20~30% 2,功耗小,效率高:功率晶体管工作在开关状态,所以晶体管的上功耗小,转化效率高,一般为60~70%,而线性电源只有30~40%
二极管限幅电路
限幅器是一个具有非线性电压传输特性的运放电路。其特点是:当输入信号电压在某一范围时,电路处于线性放大状态,具有恒定的放大倍数,而**出此范围,进入非线性区,放大倍数接近于零或很低。在变频器电路设计中要求也是很高的,要做一个好的变频器维修技术员,了解它也相当重要。
1、 二极管并联限幅器电路图如下所示:
2、二极管串联限幅电路如下图所示:
变频器控制电路组成
如图1所示,控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。
通过线路互联起来的,自治的终端设备。
将分布在不同地理位置上的具有工作能力的计算机、终端及其附属设备用通信设备和通信线路连接起来,并配置网络软件,以实现计算机资源共享的系统。
网络按网络拓扑划分
总线型,星型,.环型,网状, 树状, 星环型,拓扑。
二 网络的发展过程
1.具有通信功能的单机系统。该系统称为终端,是早期计算机网络的主要形式,它是将一台计算机通信线路与若干个终端直接相连
2.具有通信功能的多机系统。在简单的“终端——通信线路——计算机”这样的单机系统中,主计算机负担较重,既要进行数据处理,又要承担通信功能。
3.以共享资源为主要目的的计算机网络。既利用通信线路将多台终端设备连接起来,实现设备与设备之间的通信。
4.局域网络及其互连为主要支撑环境的分布式计算阶段。局域网是继远程网之后发展起来的小型终端设备网络,它继承了远程网的分组交换技术和计算机的I/O总线结构技术。并具有结构简单、经济实用、功能强大、方便灵活等特点。是随着微型计算机的广泛应用而发展起来的。
三 通信方式
F 单工通信(simplex),
F 半双工通信(Half-duplex)
F 全双工通信(Full-duplex)S7—300/S7—400可以通过MPI接口组成PLC网络,MPI网采用全局数据(Globe Data)通信模式,可在PLC之间进行少量数据交换。它不需要额外的硬件和软件,成本低,用法简。
MPI网用于连接多个不同的CPU或设备.MPI符合RS—485标准,具有多点通信的性质.MPI的波特率设定为187.5kbps.
二、多点接口(MPI)全局数据设置
GD通信的数据结构
GD通信应用
1.建立MPI站1的硬件组态
2.设置MPI站1的站地址
3.建立MPI站2的硬件组态,打开组态界面的CPU特性,设置MPI站2的站地址
4.点击Configure Network 进入配置网络界面
5.打开全局数据表 Options/Define Global Date
6.生成并装载全局数据,实现CPU到CPU通讯
发送/接收数据规则:1个MPI站的发送数据可以发送到多个MPI站,1个MPI站的接收数据只能接收1个MPI站的发送数据。
SIMATIC S7300(1)站和SIMATIC S7300(2)站的控制程序
1、PROFIBUS协议的三个主要部分:
PROFIBUS DP(Distributed I/Os):在主站和从站之间采用轮循的通讯方式,主要应用于制造业自动化系统中单元级和现场级通信。
PROFIBUS PA(Process Automation):电源和通信数据通过总线并行传输,主要用于面向过程自动化系统中单元级和现场级通讯。
PROFIBUS FMS(Fieldbus Message Specification):定义主站和主站之间的通讯模型,主要用于自动化系统中系统级和车间级的过程数据交换。
2、PROFIBUS网络由主站,从站,网络部件等构成:
主站也被称做主动节点。包括SIMATIC PLC,SIMATICWinAC控制器,支持主站功能的通讯处理器,IE/PB链路模块以及ET200S/ET200X的主站模块
典型的从站为传感器,执行器以及变频器。从站不会拥有总线访问的授权。
PROFIBUS的传输速度为9.6/19.2/93.75/187.5/500/1500Kbit/s以及3/6/12Mbit/s。
大节点数127(地址0-126)。CP 343-1通讯处理器是用于SIMATIC S7-300通讯处理器。分担CPU的通讯任务并允许其它连接。
S7-300通过CP 343-1可与编程器、计算机、人机界面装置,其他SIMATICS7系统以及SIMATIC S5可编程序制器进行通讯:
CP 343-1通讯处理器安装在S7-300的DIN标准导轨上,可也可在扩展机架上安装,通过总线连接器与相邻模块相连接,没有插槽规则。
15针D形插座用于连接工业以太网;4针端子排用于连接外部24伏直流电源;RJ45插座用于进行工业以太网的快速连接。
CP 343-1在工业以太网上处理数据通信。该模块有其自身的处理器。使用ISO传输协议,TCP传输协议,UDP传输协议。并以多重协议方式实现PG/OP通讯,S5兼容通讯等通讯服务。通过ISO传输连接的数据通讯接口多可传输8千字节的数据。
在STEP7系统下的网络的不同形式:
1
1个子网(subnet)-1个项目(project)
2
SIMATIC S5与其他站在一个子网内
3
2个或多个子网(subnet)-1个项目(project)
4
1个子网(subnet)-多个项目(project)
5
多个子网(subnet)-多个项目(project)
6
子网(subnet)间的连接(ISO-on-TCP)
CP-SEND(发送块)和CP-RECV(接收块)结构
CP-RECV(接收块)各端子参数的类型及功能
CP-SEND(发送块)各端子参数的类型及功能
西门子变频器6SL3210-1PE23-8UL0是SINAMICS G120 功率模块 PM240-2 未过滤 带集成式制动斩波器 380-480V+10/-20% 三相交流 47-63Hz 重过载功率:15kW 当 200% 3S,150% 57S, ** 240S;环境温度 -20 至 +50°C(HO);功率 轻过载:18.5kW 当 150% 3S,110% 57S, ** 240S;环境温度 -20 至 +40°C(LO) 472x 200x 237(高x宽x深),FSD 防护等级 IP20 不带控制单元和 操作单元 批准从 CU 固件- 版本 V4.7 HF8
变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流、滤波、逆变、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。本文为大家介绍几种变频器的设计方案,包含完整软硬件方案。 基于Simulink的数字下变频器设计及其FPGA实现
本文利用MATLAB的Simulink工具箱结合Altera公司的DspBuilder软件,仿真和设计了一体积较小(只需要一片FPGA)、可灵活配置的中频数字宽带接收机,并进行了FPGA的硬件实现。实验结果表明:设计的数字中频接收机具有系统带宽较宽,体积较小,可以进行灵活的配置,能满足不同的性能要求等优点。
变频器与PLC通讯的精简设计
本文介绍一种非常简便的三菱FX系列PLC通讯方式控制变频器的方法:它只需在PLC主机上安装一块RS-485通讯板或挂接一块RS-485通讯模块; 在PLC的面板下嵌入一块造价仅仅数百元的“功能扩展存储盒”,编写4条较其简单的PLC梯形图指令,即可实现8台变频器参数的读取、写入、各种运行的监视和控制,通讯距离可达50m或500m。
基于CPLD的级联型多电平变频器脉冲发生器的设计
级联型多电平变频器其PWM驱动信号很难由单一的DSP或单片机完成。本文设计的由DSP与CPLD构成的PWM脉冲发生器较好的解决了这一问题,用双DSP输出24路时存在同时性的问题,因而用复杂可编程逻辑器件CPLD来实现。 在级联型多电平变频器中有比较好的应用前景。
基于 RFFC2071的变频器设计
结合RFFC2071设计变频器,主要应用于通信市场中各频段室内、室外覆盖用直放站及其它频率变换应用等。具有低功耗 , 小体积 ,应用简单的特点 , 具有良好的性能指标 , 包括线性 ,相噪等。
基于TMS320LF2407A的全数字单相变频器的设计
本文介绍了基于DSP芯片TMS320LF2407A并使用SPWM控制技术的全数字单相变频器的设计及实现方法,完成了将380 V、50 Hz的交流电源变换成输出220 V、频率为100~400 Hz可调的交流电源。通过对样机的实际测量表明,输出波形质量良好,克服了过去这类电源采用体积大的中频变压器时出现的噪声大、响应慢、波形畸变严重等缺点。
基于DSP控制的数字移相器—变压变频器模块的设计
本设计使用DSP TMS320F2812内部外设EVA产生三相电压型逆变桥的SPWM,以控制逆变桥臂的IGBT导通关断;使用DSP内部EVA的定时器2来实现PWM驱动Buck电路;经过内部12位AD采样后反馈到PWM控制输出,以达到稳定直流电压的目的。
基于双CPU控制的静止启动变频器系统设计
本设计FPGA和DSP为核心,利用FPGA的时序严格、速度快、可编程性好等特点,将所需要的各种控制和状态信号引入FPGA,利用FPGA的大容量和现场可编程的优势,根据不同要求进行现场修改,提高了系统设计的成功率和灵活性。同时,DSP的引入较大地提高了系统的数据处理能力和速度,能够完成复杂的控制算法。
30MHz至2000MHz宽带下变频器设计
可用带宽为30MHz至2GHz的双转换接收器在一般情况下,为了覆盖这个带宽,会需要两至3个并联链路。而采用LTC5510,可以用单个电路轻松覆盖这一带宽。LTC5510 有源混频器在上变频和下变频应用中均可提供高性能。其*特的宽带50Ω匹配输入使该器件尤其适用于高性能宽带接收器,同时还可降低总的解决方案成本并简化设计。
EHF频段上变频器的设计及实现
EHF 频段是下一代卫星通信系统优选的工作频段,设备的研制越来越迫切。上变频器是系统中关键的设备,通过应用仿真软件对频率配置、杂散等指标进行了仿真分析, 研制了上变频器,设备实现了L 频段到EHF 频段2 GHz带宽的频率变换,EHF 频段1 dB输出功率大于+ 16 dBm ,2 GHz 带宽内幅频特性小于315 dB 。通过增加补偿措施,实现较小的带内幅频特性。
对RS-422与RS-485总线网络一般要使用终接电阻进行匹配。但在短距离与低速率下可以不用考虑终端匹配。那么在什么情况下不用考虑匹配呢?理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。但这在实际上难以掌握,美国MAXIM公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:当信号的转换时间(上升或下降时间)**过号沿总线单向传输所需时间的3倍以上时就可以不加匹配。例如具有限斜率特性的RS-485接口MAX483输出信号的上升或下降时间小为250ns,典型双绞线上的信号传输速率约为0.2m/ns(24AWG PVC电缆),那么只要数据速率在250kb/s以内、电缆长度不**过16米,采用MAX483作为RS-485接口时就可以不加终端匹配。
一般终端匹配采用终接电阻方法,前文已有提及,RS-422在总线电缆的远端并接电阻,RS-485则应在总线电缆的开始和末端都需并接终接电阻。终接电阻一般在RS-422网络中取100Ω,在RS-485网络中取120Ω。相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100~120Ω。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。
另外一种比较省电的匹配方式是RC匹配,如图9。利用一只电容C隔断直流成分可以节省大部分功率。但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。
还有一种采用二极管的匹配方法,如图10。这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用能迅速削弱反射信号,达到改善信号质量的目的。节能效果显著。 RS-422可支持10个节点,RS-485支持32个节点,因此多节点构成网络。网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:
1.采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响低。图8所示为实际应用中常见的一些错误连接方式(a,c,e)和正确的连接方式(b,d,f)。a,c,e这三种网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。
2.应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。
总之,应该提供一条单一、连续的信号通道作为总线。
RS-422可支持10个节点,RS-485支持32个节点,因此多节点构成网络。网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。在构建网络时,应注意如下几点:
1.采用一条双绞线电缆作总线,将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响低。图8所示为实际应用中常见的一些错误连接方式(a,c,e)和正确的连接方式(b,d,f)。a,c,e这三种网络连接尽管不正确,在短距离、低速率仍可能正常工作,但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,会造成信号质量下降。
2.应注意总线特性阻抗的连续性,在阻抗不连续点就会发生信号的反射。下列几种情况易产生这种不连续性:总线的不同区段采用了不同电缆,或某一段总线上有过多收发器紧靠在一起安装,再者是过长的分支线引出到总线。
总之,应该提供一条单一、连续的信号通道作为总线。
S-422、RS-485与RS-232不一样,数据信号采用差分传输方式,也称作平衡传输,它使用一对双绞线,将其中*定义为A,另*定义为B,如图2。
图2
通常情况下,发送驱动器A、B之间的正电平在+2~+6V,是一个逻辑状态,负电平在-2~6V,是另一个逻辑状态。另有一个信号地C,在RS-485中还有一“使能”端,而在RS-422中这是可用可不用的。“使能”端是用于控制发送驱动器与传输线的切断与连接。当“使能”端起作用时,发送驱动器处于高阻状态,称作“*三态”,即它是有别于逻辑“1”与“0”的*三态。
接收器也作与发送端相对的规定,收、发端通过平衡双绞线将AA与BB对应相连,当在收端AB之间有大于+200mV的电平时,输出正逻辑电平,小于-200mV时,输出负逻辑电平。接收器接收平衡线上的电平范围通常在200mV至6V之间。参见图3。
图3
2.RS-422电气规定
RS-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。图5是典型的RS-422四线接口。实际上还有一根信号地线,共5根线。图4是其DB9连接器引脚定义。由于接收器采用高输入阻抗和发送驱动器比RS232更强的驱动能力,故允许在相同传输线上连接多个接收节点,多可接10个节点。即一个主设备(Master),其余为从设备(Salve),从设备之间不能通信,所以RS-422支持点对多的双向通信。接收器输入阻抗为4k,故发端大负载能力是10×4k+100Ω(终接电阻)。RS-422四线接口由于采用单独的发送和接收通道,因此不必控制数据方向,各装置之间任何必须的信号交换均可以按软件方式(XON/XOFF握手)或硬件方式(一对单独的双绞线)。
图4
图5
RS-422的大传输距离为4000英尺(约1219米),大传输速率为10Mb/s。其平衡双绞线的长度与传输速率成反比,在100kb/s速率以下,才可能达到大传输距离。只有在很短的距离下才能获得高速率传输。一般100米长的双绞线上所能获得的大传输速率仅为1Mb/s。
RS-422需要一终接电阻,要求其阻值约等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。终接电阻接在传输电缆的远端。
· 如果变频器启动本身就在旋转的电机,启动时有可能出现A0501,严重情况可能导致F0001,激活捕捉再启动功能p1200
· 注意:潜水泵、压缩机、罗茨风机不同于普通的供水泵和离心风机,属于重负载应用
2.由变频器过温引起的A0501请检查以下几点
· 变频器的输出电流是否已经**过变频器额定电流
· 变频器工作环境温度是否过高
· 变频器风扇是否工作正常
3.由电机参数问题引起的A0501
· 检查设置的电机铭牌数据与电机接线方式(星接/角接)是否一致
案例集
序号
现象描述
可能的故障原因及处理措施
1
V20驱动离心风机,加速过程中出现A0501
原因:风机为大惯量负载,机械特性决定需要长的加速时间P1120
措施:延长斜坡上升时间
2
潜水泵(深井泵),启动、加速过程中出现A0501
原因:潜水泵并不是普通泵类负载, 类似恒转矩负载, 启动转矩要求较大
措施:P1300=0,适当增大电压提升P1310
3
V20驱动罗茨风机,启动过程中出现A0501, 频率不能上升。
原因:潜水泵并不是普通泵类负载, 类似恒转矩负载, 启动转矩要求较大
措施:P1300=0,适当增大电压提升P1310
4
V20变频器用于恒压供水,经常出现A0501
原因:模拟量反馈信号受干扰波动较大或PI参数设置不合适
措施:排出干扰增加模拟量滤波时间,调整PI参数
5
V20驱动风机、水泵**50Hz运行,出现A0501
原因:变频器**频运行 ,风机泵类负载导致电机轴功率按照3次方关系加大。电机过载。
措施:限制频率上限避免变频器**速运行
6
电动机空载运行报A0501,检查电机良好无机械问题
原因:电机采用角形接法,电机参数按照星形接法输入
措施:正确设置电机参数
西门子PLC维修中心
丹佛斯软启动器维修
摩托托尼软启动器维修中心
奥大软启动器维修中心
联洲软启动器维修中心
诺尔软启动器维修中心
相关阅读
西门子变频器6SL3210-1PE24-5UL0
西门子变频器6SL3210-1PE24-5UL0是SINAMICSG120功率模块PM240-2未过滤带集成式制动斩波器380-480V+10/-20%三相交流47-63Hz重过载功率:18.5kW当200%3S,150%57S,**240S;环境温度-20
2019-11-16 09:09:07
西门子变频器6SL3210-1PE23-8UL0
西门子变频器6SL3210-1PE23-8UL0是SINAMICSG120功率模块PM240-2未过滤带集成式制动斩波器380-480V+10/-20%三相交流47-63Hz重过载功率:15kW当200%3S,150%57S,**240S;环境温度-20至
2019-11-16 09:07:37
西门子变频器6SL3210-1PE23-3UL0
西门子变频器6SL3210-1PE23-3UL0是SINAMICS功率模块PM240-2未过滤带集成式制动斩波器380-480V+10/-10%三相交流47-63Hz重过载功率:11kW当200%3S,150%57S,**240S;环境温度-10至+50°
2019-11-16 09:06:32
西门子变频器6SL3210-1PE21-1UL0
西门子变频器6SL3210-1PE21-1UL0是SINAMICS功率模块PM240-2未过滤带集成式制动斩波器380-480V+10/-10%三相交流47-63Hz重过载功率:3kW当200%3S,150%57S,**240S;环境温度-10至+50°C;
2019-11-16 09:01:16