西门子MM420变频器

    西门子MM420变频器

  • 1870
  • 产品价格:88.00 元/台
  • 发货地址:上海金山枫泾 包装说明:不限
  • 产品数量:9999.00 台产品规格:不限
  • 信息编号:103741126公司编号:14117958
  • 方经理 总经理 微信 17349795628
  • 进入店铺 在线咨询 QQ咨询 在线询价


湖南合众博达科技有限公司

很多现代无线电架构包含下变频级,可将RF或微波频段向下 转换至中频,以便进行基带处理。无论较终应用是通信应 用、航空**与*应用,或是仪器仪表应用,目标频率都 越来越高,并进入了RF和微波频谱。应对这种情况的一种可 行解决方案是使用更多的下变频级,如图1所示。而另一种更 有效的解决方案是使用集成数字下变频器(DDC)的RF ADC, 如图2所示。

图1. 带下变频级的典型接收器模拟信号链。

将DDC功能集成至RF ADC中便不需要额外的模拟下变频级, 并允许RF频率域中的频谱直接向下变频至基带进行处理。RF ADC处理GHz频率域中频谱的能力放宽了模拟域中进行多次 下变频的要求。DDC的这种功能使频谱得以保留,同时允许 通过抽取滤波进行过滤,这样还能提供改善带内动态范围 (增加SNR)的优势。有关该话题的更详细讨论可参见:"祖父时代的ADC已成往事," 以及"千兆采样ADC确保直接RF变 频." 这些文章进一步讨论了 AD9680 和 AD9625 ,以及它们的 DDC功能。

本文主要关注AD9680(以及 AD9690, AD9691 和 AD9684)中的DDC功能。为了理解DDC功能,并了解当ADC中集成了 DDC时如何分析输出频谱,我们将以AD9680-500为例。ADI 网站上的折折频工具 将作为辅助工具使用。这款使用简单但功 能强大的工具可用来帮助理解ADC的混叠效应,这是分析集 成了DDC的RF ADC(比如AD9680)中输出频谱的第一步。

本例中,AD9680-500工作时的输入时钟为368.64 MHz,模拟 输入频率为270 MHz。首先,理解AD9680中数字处理模块的 设置很重要。AD9680将设为使用数字下变频器(DDC),其输 入为实数,输出为复数,数控振荡器(NCO)调谐频率设为98 MHz,半带滤波器1 (HB1)使能,6 dB增益使能。由于输出是 复数,因此复数转实数模块禁用。DDC的基本原理图如下所 示。以下内容对于了解如何处理输入信号音很重要:信号首 先通过NCO,使输入信号音的频率偏移,然后通过抽取模 块,并可选择性通过增益模块,之后再选择性通过复数转实 数模块。 图

图3. AD9680中的DDC信号处理模块。

从宏观上把握信号流过AD9680也很重要。信号进入模拟输 入,通过ADC内核,进入DDC,通过JESD204B串行器,然后 通过JESD204B串行输出通道输出。可以参见图4中的AD9680 功能框图。

输入采样时钟为368.64 MHz,模拟输入频率为270 MHz,因 此输入信号将混叠进入位于98.64 MHz处的**奈奎斯特区。 输入频率的二次谐波将混叠进入171.36 MHz处的**奈奎斯 特区,而三次谐波混叠至72.72 MHz。这可以从图5中 折频工 具曲线看出。

图5. 折频工具中的ADC输出频谱。

图5中显示的折频工具曲线给出了信号通过AD9680中的DDC 之前,位于ADC内核输出端的信号状态。信号通过AD9680中 的**个处理模块是NCO,它会将频谱在频域中向左偏移98 MHz(记住调谐频率是98 MHz)。这会将模拟输入从98.64 MHz下移至0.64 MHz,二次谐波将下移至73.36 MHz,而三次 谐波将下移至–25.28 MHz(记住我们观察的是复数输出)。这 可以从Visual Analog的FFT曲线中看出,如下文图6所示。

从图6中的FFT曲线中可以清楚地看到NCO如何偏移我们在折 频工具中观察到的频率。有意思的是,我们可以在FFT中看到 一个未经表达的信号音。然而,这个信号音真的没有经过表 达吗?NCO并不偏移所有频率。本例中,它将98 MHz的基频 输入信号音混叠向下偏移至0.64 MHz,并将二次谐波偏移至 73.36 MHz,将三次谐波偏移至–25.28 MHz。此外,还有另一 个信号音也发生了偏移,并出现在86.32 MHz。这个信号音的 来源是哪里?它是否由于DDC或ADC的信号处理而产生的? 答案是:对,不对。

让我们更加细致地看一下这个场景。折频工具 不包含ADC的 直流失调。该直流失调导致直流(或0 Hz)处存在信号音。 折频工具假设ADC是理想器件,无直流失调。在AD9680的实 际输出中,0 Hz处的直流失调信号音向下偏移至–98 MHz。由 于复数混频和抽取,直流失调信号音折回实数频域中的** 奈奎斯特区。对于信号音偏移进入*二奈奎斯特区的复数输 入信号而言,它将会绕回至实数频域中的**奈奎斯特区。 由于使能了抽取,并且抽取率等于2,我们的抽取奈奎斯特区 宽度为92.16 MHz(回忆一下:fs = 368.64 MHz,抽取采样速 率为184.32 MHz,奈奎斯特区为92.16 MHz)。直流失调信号 音偏移至–98 MHz,为92.16 MHz奈奎斯特区边界以外5.84 MHz。当该信号音绕回至**奈奎斯特区时,它的失调和实 数频域中的奈奎斯特区边界相同,即92.16 MHz – 5.84 MHz = 86.32 MHz。这正是我们在上文FFT曲线中看到的信号音!因 此,技术上而言,ADC产生信号(因为它是直流失调),而 DDC略微移动它。这时候就需要进行良好的频率规划。适当 的频率规划有助于避免此类情形。

现在,我们讨论了一个使用NCO和HB1滤波器的示例,其抽 取率等于2;让我们在这个示例中再加入一点东西。现在,我 们将增加DDC抽取率,以便观察频率折叠效应以及采用较高 抽取率和NCO频率调谐时的转换情况。

本例中,我们观察采用491.52 MHz输入时钟和150.1 MHz模拟 输入频率的AD9680-500工作情况。AD9680将设为使用数字下 变频器(DDC),并采用实数输入、复数输出、NCO调谐频率 为155 MHz、半带滤波器1 (HB1)和半带滤波器2 (HB2)使能 (总抽取率等于4)、6 dB增益使能。由于输出是复数,因此 复数转实数模块禁用。回顾图3中的DDC基本原理图,该图表 示信号流过DDC。同样,信号首先通过NCO,偏移输入信号 音的频率,然后通过抽取、增益模块,以及在本例中旁路复 数转实数模块。

我们将再次使用折频工具 来帮助理解ADC的混叠效应,以便评 估模拟输入频率和谐波在频域中的位置。本例中,我们有个实 数信号,采样速率为491.52 MSPS,抽取率设为4,输出复数。 在ADC的输出端,采用折频工具显示的信号如图7所示。

图7. 折频工具中的ADC输出频谱。

输入采样时钟为491.52 MHz,模拟输入频率为150.1 MHz,因 此输入信号将残留在**奈奎斯特区。位于300.2 MHz的输入 频率二次谐波将混叠进入191.32 MHz处的**奈奎斯特区, 而450.3 MHz处的三次谐波混叠进入41.22 MHz处的**奈奎 斯特区。这是信号通过DDC之前ADC输出端上的信号状态。

现在,让我们看一下信号如何通过DDC内部的数字处理模 块。我们将查看进入每一级的信号,并观察NCO如何偏移信 号,而抽取过程随后又是如何折叠信号的。我们将保持曲线 的输入采样速率(491.52 MSPS),fs项与此采样速率有关。让 我们观察一般过程,如图8所示。NCO将向左偏移输入信号。 一旦复数(负频率)域中的信号偏移**过–fs/2,就会折回* 一奈奎斯特区。接下来,信号通过**抽取滤波器HB1,抽 取率为2。在图中显示了抽取过程,但没有显示滤波器响应, 虽然这两个操作是同时发生的。这是为了简单起见。完成* 一次2倍抽取之后,fs/4至fs/2的频谱转换为–fs/4至DC的频率。 类似地,–fs/2至–fs/4的频谱转换为DC至fs/4的频率。信号现在 通过*二抽取滤波器HB2,它也是2倍抽取(总抽取现在等于 4)。fs/8至fs/4的频谱将转换为–fs/8至DC的频率。类似地,– fs/4至–fs/8的频谱将转换为DC至fs/8的频率。虽然图中显示了 抽取,但没有显示抽取滤波操作。

图8. 抽取滤波器对ADC输出频谱的影响—一般示例。

记得上一个示例中,我们讨论了491.52 MSPS输入采样速率以 及150.1 MHz输入频率。NCO频率为155 MHz,抽取率等于4 (由于NCO分辨率,实际NCO频率为154.94 MHz)。因此,输 出采样速率为122.88 MSPS。由于AD9680配置为复数混频, 我们需要在分析中包含复数频率域。图9显示了频率转换非常 繁忙,但如果仔细研究的话可以看到信号流。

图9. 抽取滤波器对ADC输出频谱的影响—实际示例。

NCO偏移后的频谱:

基频从+150.1 MHz下移至–4.94 MHz。

基频镜像从–150.1 MHz开始偏移,并绕回至186.48 MHz。

二次谐波从191.32 MHz下移至36.38 MHz。

三次谐波从+41.22 MHz下移至–113.72 MHz。

2倍抽取后的频谱:

基频停留在–4.94 MHz。

基频镜像向下转换至–59.28 MHz,并由HB1抽取滤波器衰减。

二次谐波停留在36.38 MHz。

三次谐波由HB1抽取滤波器大幅衰减。

4倍抽取后的频谱:

基频停留在–4.94 MHz。

基频镜像停留在–59.28 MHz。

二次谐波停留在-36.38 MHz。

过滤三次谐波,并由HB2抽取滤波器几乎完全消除。图9.

现在,来看看AD9680-500的实际测量。可以看到基频位于– 4.94 MHz 。基频镜像位于–59.28 MHz , 幅度为–67.112 dBFS,意味着镜像衰减了大约66 dB。二次谐波位于36.38 MHz。注意,VisualAnalog无法正确找到谐波频率,因为它不 解析NCO频率和抽取率。

图10. 信号经过DDC后的FFT复数输出曲线(NCO = 155 MHz,4倍抽取)。

如果DDC设为实数输入和复数输出,并且NCO频率为155 MHz(实际是154.94 MHz),那么从FFT中可以看出AD9680- 500的输出频谱,而抽取率为4。我鼓励大家了解信号流程 图,理解频谱是如何偏移和转换的。我还鼓励大家详细了解 本文中的示例,以便理解DDC对于ADC输出频谱的影响。我 建议打印图8 并随时参考, 供分析AD9680 、AD9690 、 AD9691和AD9684的输出频谱时使用。支持这些产品时,我 遇到了很多人们认为无法解释的ADC输出频谱相关的频率问 题。然而一旦完成了分析,并通过NCO和抽取滤波器分析了 信号流,之前认为无法解释的频谱杂散便可以证明它们实际 上是确实应当存在的信号。我希望,通过阅读和学习本文, 下次碰到集成DDC的ADC时,您可以更有准备地处理问题。 敬请关注*二部分—我们将从其它方面继续讨论DDC,以及 如何仿真它的行为。我们将讨论ADC混叠导致的抽取滤波器 响应,将会提供更多示例,并使用Virtual Eval来观察AD9680 中的DDC工作情况及其对ADC输出频谱的影响。

西门子股份公司(SIEMENS AG FWB:SIE, NYSE:SI)是世界较大西门子公司总部的机电类公司之一,1847年由维尔纳·冯·西门子建立。国际总部位于德国慕尼黑。西门子股份公司在法兰克福证券交易所和纽约证券交易所上市。主要业务集中在工业、能源、医疗、基础设施与城市四大业务领域。2005年,西门子集团在190个国家和地区雇用员工460,800人,**收入为754.45亿欧元。2014年9月,西门子股份公司和博世集团达成协议:罗伯特·博世公司收购西门子所持有的合资企业博世和西门子家用电器集团(简称博西家电)50%的股份,交易完成后博西家电成为博世集团的全资子公司,西门子彻底退出家电领域。出售家电业务正是西门子专注于电气化、自动化和数字化战略的体现之一。

2018年10月11日,《福布斯》发布2018年**较佳雇主榜单,西门子排名*15位。

由于无速度反馈的矢量控制(SVC)能提供很高的动态和静态特性,因此在以下应用场合可以使用MM440的无速度反馈的矢量控制模式。  要求很高的动态特性   低速时要求提供大的输出力矩  要求很精确的速度稳定性   要求对电机提供很完善的保护   要求很快的响应速度 由于SVC控制需要很精确的电机模型,因此SVC控制不能应用于以下一些场合:   电机和变频器的额定功率比小于1比4  电机运行较大频率**过200HZ  同步电机和多电机传动

在变频器与电动机和电源线连接时必须注意以下几点:

1)变频器必须接地。

2)在变频器与电源线连接或更换变频器的电源线之前,应完成电源线的绝缘测试。

3)确信电动机与电源电压的匹配是正确的。

4)不允许把MM440变频器连接到电压更高的电源上。

2.MM440的开关量运行

西门子MM440变频器系列篇(1)数字量控制

   MM440变频器有6个数字输入端口,用户可根据需要设置每个端口的功能。从P0701~P0706为数字输入1功能至数字输入6功能,每一个数字输入功能设置参数值范围均从0~99,工厂默认值为1,下面列出其中几个参数值,并说明其含义。

(1)参数值为1:ON接通正转,OFFl停车。

(2)参数值为2:ON接通反转,OFFl停车。

(3)参数值为3:OFF2(停车命令2),按惯性自由停车。

(4)参数值为4:OFF3(停车命令3),按斜坡函数曲线快速降速

(5)参数值为9:故障确认。

(6)参数值为10:正向点动。

(7)参数值为11:反向点动。

(8)参数值为17:固定频率设定值。

(9)参数值为25:直流注入制动。

MM440变频器数字输入控制端口开关量运行接线如图所示。在图中SBl~SB4为带自锁按钮,分别控制数字输入5~8端口。端口5设置为正转控制,其功能由P0701的参数值设置。端口6设为反转控制,其功能由P0702的参数值设置。端口7设为正向点动控制,其功能由P0703的参数值设置。端口8设为反向点动控制,其功能由P0704的参数值设置。频率和时间各参数在变频器的前操作面板上直接设置

系统操作步骤如下:

(1)连接好电路,检查线路正确后合上变频器电源空气开关Q。

(2)恢复变频器工厂默认值。按下P键,变频器开始复位到工厂默认值。

(3)设置电动机参数,然后设P0010=0,变频器当前处于准备状态,可正常运行。

(4)设置数字输入控制端口开关操作运行参数,

1)电动机正向运行。当按下按钮SB1时,变频器数字输入端口5为“ON”,电动机按P1120所设置的5s斜坡上升时间正向起动,经5s后稳定运行在560r/min的转速上。此转速与Pl040所设置的20Hz频率对应。松开按钮SB1,数字输入端口5为“OFF”,电动机按P1121所设置的5s斜坡下降时间停车,经5s后电动机停止运行。

2)电动机反向运行。如果要使电动机反转,则按下按钮SB2,变频器数字输入端口“6”为“ON”,电动机按P1120所设置的5s斜坡上升时间反向起动,经5s后反向运行在560r/min的转速上。此转速与P1040所设置的20Hz频率对应。松开带锁按钮SB2,数字输入端口6为“OFF”,电动机按P1121所设置的5s斜坡下降时间停车,经5s后电动机停止运行。

3)电动机正向点动运行。当按下正向点动按钮SB3时,变频器数字输入端口7为“ON”,电动机按P1060所设置的5s点动斜坡上升时间正向点动运行,经5s后正向稳定运行在280r/min的转速上。此转速与P1058所设置的10Hz频率对应。当松开按钮SB3时,数字输入端口7为“OFF”,电动机按P1061所设置的5s点动斜坡下降时间停车。

4)电动机反向点动运行。当按下反向点动按钮SB4时,变频器数字输入端口8为“ON”,电动机按P1060所设置的5s点动斜坡上升时间反向点动运行,经5s后反向稳定运行在280r/min的转速上,此转速与P1058所设置的10Hz频率对应。当松开按钮SB4时,数字输入端口8为“OFF”,电动机按P1061所设置的5s点动斜坡下降时间停车。




欢迎来到湖南合众博达科技有限公司网站,我公司位于历史文化悠久,近代城市文化底蕴深厚,历史古迹众多,有“东方巴黎”美称的上海市。 具体地址是上海金山枫泾上海市金山区枫泾镇,联系人是方经理。
联系电话是17349795628, 主要经营湖南合众博达科技有限公司(szzhangqin.b2b168.com)主营:西门子PLC触摸屏、PLC模块等产品,全国统一热线电话:18321983249。湖南合众博达科技有限公司为您提供耐心的售前技术支持,精准的方案确定;售后的疑难问题排查解决,系统维护指南;调试阶段的现场技术服务,细致的技术培训。。
单位注册资金单位注册资金人民币 500 - 1000 万元。

  • 供应商更多产品推荐
  • 关于八方 | 招贤纳士八方币招商合作网站地图免费注册商业广告友情链接八方业务联系我们汇款方式投诉举报
    八方资源网联盟网站: 八方资源网国际站 粤ICP备10089450号-8 - 经营许可证编号:粤B2-20130562 软件企业认定:深R-2013-2017 软件产品登记:深DGY-2013-3594 著作权登记:2013SR134025
    互联网药品信息服务资格证书:(粤)--非经营性--2013--0176
    粤公网安备 44030602000281号
    Copyright © 2004 - 2024 b2b168.com All Rights Reserved